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Abstract 

Recent studies proposed a general psychopathology factor underlying common comorbidities 

among psychiatric disorders. However, its neurobiological mechanisms and generalizability 

remain elusive. In this study, we used a large longitudinal neuroimaging cohort from 
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adolescence to young adulthood (IMAGEN) to define a neuropsychopathological (NP) factor 

across externalizing and internalizing symptoms using multitask connectomes. We 

demonstrate that this NP factor might represent a unified, genetically determined, delayed 

development of the prefrontal cortex that further leads to poor executive function. We also 

show this NP factor to be reproducible in multiple developmental periods, from 

preadolescence to early adulthood, and generalizable to the resting-state connectome and 

clinical samples (the ADHD-200 Sample and the STRATIFY & ESTRA Project). In 

conclusion, we identify a reproducible and general neural basis underlying symptoms of 

multiple mental health disorders, bridging multidimensional evidence from behavioral, 

neuroimaging and genetic substrates. These findings may help to develop new therapeutic 

interventions for psychiatric comorbidities. 
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The coexistence of multiple psychiatric conditions, known as psychiatric comorbidity1, has 

garnered substantial attention due to its high prevalence and long-lasting impact2. Individuals 

with comorbid psychiatric diagnoses often experience poorer outcomes and severe deficits in 

various cognitive and behavioral domains3. Notably, many psychiatric disorders, for example, 

externalizing and internalizing disorders, have their approximate peak onset in adolescence, 

coinciding with the emergence of comorbidity4,5. For instance, a population-based study on 

the well-being of adolescents found that 27.9% of participants aged 14–17 reached multiple 

diagnostic criteria6. The high prevalence of comorbid mental disorders suggests shared 

neurobiological origins among different psychopathologies2. However, the 

neuropsychopathological mechanism of psychiatric comorbidity, particularly during the 

critical period of adolescence, remains elusive. 

Recently, emerging evidence has suggested a general psychopathology factor (that is, the p 

factor) underlying higher vulnerability for different psychiatric disorders7. Statistically, the p 

factor summarizes a pattern of positive correlations among symptoms; however, it leaves no 

room for alternative latent effects (for example, anticorrelation among symptoms). Indeed, it 

was argued that the behavioral p factor is largely equivalent to a sum of all symptoms8. 

Further, previous neuroimaging studies that investigated the neural correlates of the p factor 

mainly relied on task-free modalities, such as resting state9, diffusion10 and structural 

magnetic resonance imaging (MRI)11. However, although these task-free neural correlates of 

this p factor represent varied neurobiological information, they do not aid in specifying the 

neurocognitive processes underlying multiple psychopathologies12,13. Instead, the relevant 

cognitive brain circuitry can be mapped using multitask functional MRI (fMRI) data, which 

have also been used previously to identify circuit-specific neural signatures of externalizing 

symptoms14. 

In contrast, crossdisorder genetic studies further revealed that many psychiatric disorders 

share high degrees of positive genetic correlations15,16, and the common genetic variants 

predominantly involved neurodevelopmental processes17,18. However, opposite genetic effects 

were also identified among psychiatric disorders17, which further highlighted the complexity 

of shared biological processes across multiple mental disorders. Therefore, it is necessary to 

integrate behavioral, neuroimaging and genetic evidence to establish coherent neurobiological 

crossdisorder neural factors (that is, the NP factor) that are not only shared among different 

psychopathologies but could also be attributed to specific cognitive brain circuits and genetic 

variants. 

Notably, mounting evidence propose that many mental disorders can be understood as 

extreme deviations from a continuous spectrum in the population and different mental 

disorders may demonstrate similar deficits in multiple cognitive functions, as envisaged by 

Research Domain Criteria19. This new understanding inspires us to investigate potential 

transdiagnostic neurobiological processes from population-based data that are enriched with 

task-based fMRIs of multiple cognitive domains and symptom measurements covering a wide 

range of mental disorders. This approach also allows us to avoid the dilemma of case–control 

studies in identifying transdiagnostic biomarkers, where comorbidity is generally considered a 

major confounding factor to be removed. Furthermore, considering the replication crisis in 

neuroimaging studies, it was suggested that combining large neuroimaging samples and 

machine-learning approaches (that is, combining training and validation processes) could 

increase the reliability and reproducibility of identified neurobiomarkers20,21. 

In this study, we will address the following three specific major questions regarding the 

shared neural bases of behavioral symptoms related to psychiatric disorders (Fig. 1a): (1) Can 
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we establish an NP factor underlying both externalizing and internalizing symptoms on the 

basis of the multiple task-based connectomes of fMRI? (2) Is the NP factor supported by 

genetic and neurobehavioral substrates of comorbid mental disorders? (3) Could the NP factor 

be generalized to other developmental stages and clinical crossdisorder datasets? 

Fig. 1: Overview of research questions and analyses. 

 

a, This study aims to answer three questions (Q1–Q3) about multiple neurobiological aspects 

of general psychopathology. b, We identified the NP factor in the IMAGEN dataset at ages 14 

and 19 on the basis of task-based FC with a CPM (Q1; N = 1,750). c, We characterized the NP 

factor using multiple neurocognitive behaviors and genetic substrates (Q2). d, We checked 

the generalizability of the NP factor in multiple developmental periods using different fMRI 

states (Q3; N = 4,942). AN, anorexia nervosa; BN, bulimia nervosa; AUD, alcohol use 

disorder ; MDD, major depressive disorder; ADHD, attention-deficit/hyperactivity disorder; 

ASD, autism spectrum disorder; CD, conduct disorder; ODD, oppositional defiant disorder; 

GAD, general anxiety disorder; Dep., depression; ED, eating disorder; SP, specific phobia; 

FPN, frontoparietal network; IFG, inferior frontal gyrus; mPFC, medial prefrontal cortex; 

SAL, salience network; SMF, superior medial frontal network; NP factor score, the 

connectivity strength of the NP factor; vPCun, ventral precuneus. 

Full size image 

Results 

Summary of major analytic steps 
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First, we leveraged the population-based IMAGEN cohort (aged 14 years, N = 1,750, 882 

girls; Extended Data Table 1) to estimate the brain signature of eight behavioral symptoms 

using the connectivity-based predictive model grounded on multiple task-based fMRIs (Fig. 

1b). Specifically, we estimated the condition-specific functional connectivity (FC) using a 

well-established whole-brain functional atlas22. These task-based FCs were used in a 

connectome-based predictive model (CPM)23 to predict each of the eight behavioral 

symptoms related to psychiatric disorders (Fig. 2 and Supplementary Table 1). First, in the 

CPM, univariately significant FCs were used to establish a linear model for prediction, and 

crossvalidation was implemented to avoid overfitting and improve the model’s reproducibility 

in novel samples24 (Extended Data Fig. 1a). Second, we conducted longitudinal analyses to 

identify a sustainable transdiagnostic NP factor that was predictive of both externalizing and 

internalizing symptoms across adolescence and early adulthood (Fig. 1b and Extended Data 

Fig. 1b). Third, we characterized the NP factor in multiple neurobiological aspects (Fig. 1c), 

including its neuroanatomical interpretation (that is, the brain networks involved), 

neurobehavioral relevance (with the corresponding task performance) and its associations 

with common environmental and behavioral risk factors. We also investigated candidate 

biological processes and genetic substrates underlying the crossdisorder NP factor. Finally, 

we assessed and confirmed the generalizability of the NP factor in other developmental 

periods and resting-state MRIs (from Adolescent Brain Cognitive Development (ABCD) and 

Human Connectome Project (HCP) cohorts) and in clinical datasets (from the ADHD-200 

Sample (ADHD-200) and the STRATIFY/ESTRA Project (STRATIFY/ESTRA)) (Fig. 1d). 

Fig. 2: Histograms of externalizing and internalizing symptoms at age 14. 

 

Externalizing symptoms include ASD, ADHD, CD and ODD; internalizing symptoms include 

GAD, depression, ED and SP. The green line in each graph marks an approximate threshold 
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for individuals who are high risk (that is, chance with diagnoses is over 50% according to 

Development And Well-Being Assessment (DAWBA)). 

Full size image 

Brain signatures of externalizing and internalizing symptoms 

We found the task-based FC derived from the eight task conditions significantly predicted 

most behavioral symptoms after Bonferroni correction (Fig. 3a and Supplementary Table 2). 

To evaluate the integrated predictive effects, we used a multiple regression model combining 

the predicted symptom scores of different task conditions. Specifically, externalizing 

symptoms of attention-deficit/hyperactivity disorder (ADHD; adjusted R2 (adj-R2) = 4.28%), 

autism spectrum disorder (ASD; adj-R2 = 2.66%), conduct disorder (CD; adj-R2 = 2.23%) and 

oppositional defiant disorder (ODD; adj-R2 = 1.30%) were largely explained by the cognitive 

domains of reward sensitivity and inhibitory control (Supplementary Table 3). Similarly, three 

internalizing symptoms (specific phobia (SP), generalized anxiety disorder (GAD) and eating 

disorder (ED)) were also significantly predicted by reward sensitivity, inhibitory control and 

emotional reactivity (SP adj-R2 = 4.83 %, GAD adj-R2 = 1.97%, ED adj-R2 = 4.89%; 

Supplementary Table 3). Our results suggested that we could characterize the shared neural 

configurations underlying general psychopathology using these brain signatures of 

externalizing and internalizing symptoms. 

Fig. 3: Identification of the NP factor. 
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a, The predictive performance of behavioral symptoms related to psychiatric disorders using 

the task-based connectivity model. Task-based connectivity was obtained from the EFT 

(angry and neutral conditions), the MID task (reward anticipation, positive reward feedback 

and negative reward feedback conditions) and the SST (go-wrong, stop-success and stop-

failure conditions). Overall predictive performance was estimated using a multiple regression 

model with predicted symptoms of all task conditions. b, Crossdisorder edges could predict 

externalizing and internalizing symptoms simultaneously. Externalizing symptoms consisted 

of ASD, ADHD, CD and ODD. Internalizing symptoms comprised GAD, Dep., ED and SP. 

For each task condition, we further estimated whether the set of crossdisorder edges was 

significantly larger than a random discovery with permutation tests. The results showed that 

only conditions from the SST and MID task had significantly more crossdisorder edges than a 

random observation. c, Using reliability and longitudinal analyses, we identified the NP factor 

that was positively predictive for both externalizing and internalizing symptoms across ages 

14 and 19. 14-brain, brain at age 14; 19-brain, brain at age 19; exter., externalizing; inter., 

internalizing; neg., negative; NP factor score, the summed FC strength of the transdiagnostic 

edges; NS, not significant; pos., positive. 

Full size image 

Construction of a reliable and persistent NP factor 

Next, we aimed to establish the NP factor, consisting of crossdisorder edges, in relation to 

both externalizing and internalizing symptoms (Fig. 3b). The NP factor needed to meet two 

additional criteria: (1) only crossdisorder edges from the most reliable and informative task 

conditions should be used to construct the NP factor; and (2) the NP factor should be a 

persistent predictor of different behavioral symptoms from adolescence to young adulthood, 

given the persistent nature of psychiatric comorbidity over time3,4. 

First, we investigated the enrichment of crossdisorder edges using permutation tests to 

evaluate if the number of crossdisorder edges (nedge) identified in a given task condition was 

significantly larger than that in a random discovery. In each permutation iteration, we 

reconducted the previously mentioned CPM process using randomly reshuffled participant 

labels and counted the corresponding number of crossdisorder edges (Fig. 3b, see Methods for 

details). We found that only conditions from the stop signal task (SST) and the monetary 

incentive delay (MID) task had significantly more crossdisorder edges than in a random 

observation (for SST, stop success nedge = 325, stop failure nedge = 297, positive feedback 

nedge = 344; for MID, reward anticipation nedge = 316; all P values based on permutation 

(Pperm) < 0.001; Supplementary Table 4). These four task conditions were therefore considered 

reliable and included in the following analyses. Next, to improve interpretability, we then 

stratified crossdisorder edges from the four reliable task conditions into four groups in terms 

of their predictive effects (Fig. 3c), that is, positive–positive (nedge = 136) and negative–

negative (nedge = 64) consensus edges (which showed positive or negative correlations with 

both externalizing and internalizing symptoms simultaneously), and positive–negative 

(nedge = 1,032) and negative–positive (nedge = 48) dissensus edges (which had opposite 

correlations with externalizing and internalizing symptoms). The number of positive–negative 

edges (Pperm < 0.001), negative–positive edges (Pperm = 0.002) and positive–positive edges 

(Pperm < 0.001) were significantly higher than that in random discoveries (Supplementary 

Table 5a), and were therefore included in the following analyses. 

Finally, we examined the longitudinal consistency for each of these three crossdisorder edge 

groups and characterized the summed FC strength of the longitudinally consistent 
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crossdisorder edge group as the NP factor underlying externalizing and internalizing disorders 

simultaneously (Fig. 3c). We found that only the summed FC strength of positive–positive 

consensus edges was associated with externalizing and internalizing symptoms 

simultaneously at both ages 14 (for externalizing symptoms, N = 1,724, r = 0.31, 95% 

confidence interval (CI) = [0.27,∞), one-tailed Pperm < 0.001; for internalizing symptoms, 

r = 0.23, 95% CI = [0.19,∞), one-tailed Pperm < 0.001; because the symptom-predictive model 

was trained at age 14, P values here were estimated using permutation tests that are robust to 

overfitting; Supplementary Table 5c) and 19 (for externalizing symptoms, N = 1,101, r = 0.13, 

95% CI = [0.08,∞), t-statistic (t) = 4.43, Pone-tailed = 1.51 × 10−5; for internalizing symptoms, 

r = 0.051, 95% CI = [0.001,∞), t = 1.70, Pone-tailed = 0.044; Supplementary Table 6a). 

Moreover, the summed FC strength of positive–positive edges at age 14 could also predict the 

subsequent behavioral symptoms measured at age 19 (for externalizing symptoms, N = 1,045, 

r = 0.13, 95% CI = [0.08,∞), t = 4.26, Pone-tailed = 1.24 × 10−5; for internalizing symptoms, 

r = 0.17, 95% CI = [0.12,∞), t = 5.54, Pone-tailed = 1.60 × 10−8; Supplementary Table 6b), even 

after controlling for the baseline measurements (for externalizing symptoms, N = 1,036, 

r = 0.073, 95% CI = [0.02,∞), t = 2.34, Pone-tailed = 0.010; for internalizing symptoms, r = 0.076, 

95% CI = [0.03,∞), t = 2.44, Pone-tailed = 0.008; Supplementary Table 6c). Research sites, sex 

and handedness were included as control variables for the above association analyses and 

henceforward. 

Therefore, we proposed the summed FC strength of positive–positive consensus edges as the 

NP factor because it was both positively and longitudinally associated with externalizing and 

internalizing symptoms across adolescence and young adulthood. Notably, the NP factor had 

a significantly positive FC strength at both ages 14 and 19 (at age 14, N = 1,750, t = 43.89, 

Cohen’s d = 2.10, 95% CI = [1.98,2.22], Ptwo-tailed = 1.36 × 10−284; at age 19, N = 1,345, 

t = 34.21, Cohen’s d = 2.10, 95% CI = [1.74,1.99], Ptwo-tailed = 2.53 × 10−185), whereas it 

showed a decreased FC strength from age 14 to age 19 (N = 1,087, t = 3.12, Cohen’s d = 0.19, 

95% CI = [0.07,0.31], Ptwo-tailed = 0.002). This decrease was associated with baseline 

behavioral symptoms (N = 906; for externalizing symptoms, r = 0.15, 95% CI = [0.09,0.21], 

t = 4.68, Ptwo-tailed = 3.31 × 10−6; for internalizing symptoms, r = 0.16, 95% CI = [0.10,0.22], 

t = 4.87, Ptwo-tailed = 1.24 × 10−6), indicating that individuals with more behavioral symptoms 

had a distinct NP factor trajectory during this developmental period. 

Prefrontal-related NP factor linked to executive dysfunction 

We then characterized the NP factor in its neuroanatomical interpretation (that is, how the NP 

factor relates to established brain networks and critical brain regions), neurobehavioral 

relevance (how the NP factor associates with task performance during the MID task and the 

SST) and associations with common environmental and behavioral risk factors (how the NP 

factor relates to common putative psychopathological risk factors). 

The NP factor mainly encompassed prefrontal cortical circuits, such as the superior medial 

frontal, salience and frontoparietal networks (Fig. 4a and Supplementary Fig. 6), with 

prominent regions including the ventral precuneus, the inferior frontal gyrus, the middle 

occipital gyrus, the insula and the medial prefrontal cortex (Fig. 4b and Supplementary Table 

8). Notably, the region with the largest node degree (that is, the region with the greatest 

number of connections to other nodes) was the ventral precuneus, which might serve as a hub 

that integrates information to or from multiple prefrontal regions25 (Fig. 4c). 

Fig. 4: Neurobiological characterization of the NP factor. 
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a, The functional brain connections of the NP factor were mainly localized between the 

frontoparietal network and the superior medial frontal and limbic networks. The color bar 

indicates the strength of normalized inter- or intranetwork connections, where the number of 

connections between or within networks was divided by the largest connection number 

observed. b, The top 10% nodes in the NP factor ranked by the normalized node degree (that 

is, the number of connections with other nodes). c, The functional connection network of the 

NP factor containing the node with the largest degree (that is, the ventral precuneus). d, The 

NP factor was associated with response accuracy during the MID task and the SST. e, The NP 

factor was associated with most cognitive functions (13 of 20), primarily executive function-

related behaviors. The significance level (that is, the dashed line) was given as a false 

discovery rate (fdr) of 0.05. The P values were reported as the original value and could 

survive the multiple correction with Benjamin–Hochberg procedure. |t| stands for the absolute 

value of t-statistics. AGN, Affective Go-No Go; BMI, body mass index; DD, Delay 

https://www.nature.com/articles/s41591-023-02317-4/figures/4


Discounting Task; MidOcci, middle occipital cortex; MidPFC, middle prefrontal cortex; 

NEO, NEO Personality Inventory; RVP: A, Target Sensitivity from Rapid Visual Information 

Processing task; PRM, Pattern Recognition Memory task; SURPS, Substance Use Risk 

Personality Scale; SWM, Spatial Working Memory task; TCI, Temperament and Character 

Inventory–Revised. 

Full size image 

Because the NP factor was constructed with the SST and the MID task (but not the emotional 

face task (EFT) due to its failed stability test), we further assessed the associations of the NP 

factor with task performance during reward sensitivity and inhibitory control. We found that a 

stronger NP factor was associated with lower accuracy in the MID task (N = 1,620, r = −0.14, 

95% CI = [−0.19,−0.09], t = −5.83, Ptwo-tailed = 6.68 × 10−9) and the SST go trials (N = 1,567, 

r = −0.15, 95% CI = [−0.20,−0.10], t = −6.16, Ptwo-tailed = 9.23 × 10−10; Fig. 4d), but not with 

the reaction time of the MID task (r = −0.028, 95% CI = [−0.08,0.02], t = −1.11, Ptwo-

tailed = 0.26) or the stop-signal delay task (r = 0.007, 95% CI = [−0.04,0.05], t = 0.29, Ptwo-

tailed = 0.77). A follow-up analysis revealed that the observed differentiated associations with 

accuracy and reaction time were significant for the NP factor scores derived from both the 

MID task (Z = 3.16, Cohen’s d = 0.16, 95% CI = [0.06,0.25], Ptwo-tailed = 0.001, Steiger’s Z-

test) and SST (Z = 4.04, Cohen’s d = 0.20, 95% CI = [0.11,0.30], Ptwo-tailed = 5.35 × 10−5, 

Steiger’s Z-test). 

We then characterized the functional specificity of the NP factor by systemically investigating 

its associations with common neurocognitive (that is, cognitive functions and personality) and 

environmental risk factors for mental disorders. We found the NP factor was predominantly 

correlated with cognitive functions, such as IQ, risk adjustment and working memory 

performance (Fig. 4e and Supplementary Table 9), mainly associated with executive control 

processes26,27. In conclusion, our results suggested the NP factor could be the manifestation of 

deficits in executive control across externalizing and internalizing symptoms. 

NP factor as the endophenotype of comorbid mental disorders 

We also investigated whether the NP factor could serve as an endophenotype of psychiatric 

comorbidity using the polygenic risk scores (PRSs) and transdiagnostic genetic variants. We 

found the NP factor score (that is, the summed FC strength of crossdisorder edges) was 

associated with the PRS of ADHD28, major depressive disorder (MDD)29 and IQ30, all of 

which correlated with most behavioral symptoms at age 14 (Supplementary Table 10). 

Specifically, individuals with a higher NP factor had consistently higher PRSs for both 

ADHD and MDD, and lower PRSs of IQ at both ages 14 (N = 1,594; for ADHD, r = 0.10, 

95% CI = [0.06,∞), t = 3.92, Pone-tailed = 4.51 × 10−5; for MDD, r = 0.07, 95% CI = [0.03,∞), 

t = 2.70, Pone-tailed = 0.004; for IQ, r = −0.10, 95% CI = (−∞,−0.06], t = −3.97, Pone-

tailed = 3.70 × 10−5) and 19 (N = 1,200; for ADHD, r = 0.070, 95% CI = [0.02,∞), t = 2.54, Pone-

tailed = 0.006; for MDD, r = 0.10, 95% CI = [0.05,∞), t = 3.47, Pone-tailed = 2.73 × 10−4; for IQ, 

r = −0.05, 95% CI = (−∞,−0.002], t = −1.80, Pone-tailed = 0.036; Fig. 5a). 

Fig. 5: Genetic analyses of the NP factor. 

https://www.nature.com/articles/s41591-023-02317-4/figures/4
https://www.nature.com/articles/s41591-023-02317-4#Fig4
https://www.nature.com/articles/s41591-023-02317-4#Fig4
https://www.nature.com/articles/s41591-023-02317-4#MOESM1
https://www.nature.com/articles/s41591-023-02317-4#ref-CR26
https://www.nature.com/articles/s41591-023-02317-4#ref-CR27
https://www.nature.com/articles/s41591-023-02317-4#ref-CR28
https://www.nature.com/articles/s41591-023-02317-4#ref-CR29
https://www.nature.com/articles/s41591-023-02317-4#ref-CR30
https://www.nature.com/articles/s41591-023-02317-4#MOESM1
https://www.nature.com/articles/s41591-023-02317-4#Fig5


 

a, The NP factor correlated with the PRSs of ADHD, depression and IQ, and all were 

associated with most behavioral symptoms (N = 1,594 for age 14; N = 1,200 for age 19). b, 

The NP factor was associated with a crossdisorder SNP rs6780942, which was identified in a 

previous crossdisorder GWAS18. This SNP is mapped to the IGSF11 gene. The upper and 

lower bars represent the Q3 + 1.5 × IQR and Q1 − 1.5 × IQR, respectively. The upper and 

lower edges of a box represent the Q3 and Q1, and the central line represents the median. 

Outliers are illustrated as bold dots. c, Expression of IGSF11 across 15 brain regions peaks at 

adolescence. The P values were reported as the original value and could survive the multiple 

correction with Benjamin–Hochberg procedure. * P < 0.05, ** P < 0.01, *** P < 0.001. Q1, 

first quartile; Q3, third quartile; IQR, interquartile range. 

Full size image 

We next investigated candidate biological mechanisms underlying the NP factor by analyzing 

four single nucleotide polymorphisms (SNPs) identified in a recent large-scale, crossdisorder 

genome-wide association study (GWAS)18. We found that the NP factor was positively 

associated with the risk allele T of rs6780942 (N = 1,573, r = 0.074, 95% CI = [0.03,∞), 

t = 3.04, Ptwo-tailed = 0.004; Fig. 5b), which was also the most prominent finding in the 

crossdisorder GWAS18 (P = 1.11 × 10−10) and was significant in both an ADHD28 (P = 0.0003) 

and MDD29 (P = 0.0001) GWAS. The SNP rs6780942 maps to immunoglobulin superfamily 

member 11 (IGSF11), a gene preferentially expressed in the brain that regulates synaptic 

adhesion31. We then investigated gene expression of IGSF11 across different developmental 

periods using BrainSpan32 and observed a reduced gene expression of IGSF11 from 

adolescence to adulthood (Fig. 5c), which may aid in explaining the reduced connectivity 

strength of the NP factor during the same period. In summary, these results implied the NP 
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factor might be related to genetically determined neurodevelopment from adolescence to 

adulthood. 

Generalization of the NP factor 

We reconstructed the NP factor on the basis of the MID task and the SST in another large-

scale, population-based ABCD study33. Again, the NP factor grounded on the ABCD study 

(N = 1,799) showed significant positive associations with both externalizing (r = 0.048, 95% 

CI = [0.001,∞), t = 2.04, Pone-tailed = 0.020) and internalizing symptoms (r = 0.056, 95% 

CI = [0.017,∞), t = 2.38, Pone-tailed = 0.009) at age 10. Moreover, the NP factor estimated at age 

10 also demonstrated longitudinal persistence in predicting future behavioral symptoms at age 

11 (N = 1,042; for externalizing symptoms, r = 0.053, 95% CI = [0.002,∞), t = 1.72, Pone-

tailed = 0.043; for internalizing symptoms, r = 0.079, 95% CI = [0.028,∞), t = 2.55, Pone-

tailed = 0.005). This effect was also true for each individual fMRI task (Table 1). 

Table 1 Generalization of the NP factor in multiple developmental periods across fMRI 

states for population-based datasets (ABCD, IMAGEN and HCP, N = 3,958) 

Full size table 

Table 2 Generalization of the NP factor in multiple developmental periods across fMRI 

states for clinical case–control datasets (STRATIFY/ESTRA and ADHD-200, N = 953) 

Full size table 

To assess the clinical relevance of the NP factor, we stratified IMAGEN participants at age 14 

into individuals with comorbid diagnoses (that is, those identified as being at severe or high 

risk for at least two mental disorders simultaneously; N = 39), individuals with a single 

diagnosis (that is, those identified as being at severe or high risk for only one mental disorder; 

N = 95) and healthy controls (that is, those identified as having no mental disorders; N = 859; 

Extended Data Table 1 and Methods). Both those identified as having comorbid diagnoses 

and those with a single diagnosis demonstrated significantly higher NP factor scores than 

healthy controls (for comorbid diagnoses, t = 7.48, Cohen’s d = 1.22, 95% CI = [0.95,∞), Pone-

tailed = 1.80 × 10−13; for a single diagnosis, t = 6.49, Cohen’s d = 0.70, 95% CI = [0.91,∞), Pone-

tailed = 1.39 × 10−10). Furthermore, those with comorbid diagnoses also demonstrated 

significantly higher NP factor scores than those with a single diagnosis (t = 2.39, Cohen’s 

d = 0.46, 95% CI = [0.14,∞), Pone-tailed = 0.018; Extended Data Fig. 2a). Similarly, in the 

ABCD cohort, using the Kiddie Schedule for Affective Disorders and Schizophrenia–5, we 

identified 61 individuals with comorbid diagnoses, 160 with a single diagnosis and 1578 

healthy controls with no symptoms across all mental disorders (Extended Data Table 2). 

Again, individuals with comorbid diagnoses demonstrated higher NP factor scores than both 

those with a single diagnosis (t = 2.11, Cohen’s d = 0.32, 95% CI = [0.07,∞), Pone-tailed = 0.017) 

and healthy controls (t = 3.67, Cohen’s d = 0.48, 95% CI = [0.26,∞), Pone-tailed = 2.50 × 10−4) 

(Extended Data Fig. 2b). However, no difference in NP factor scores was observed between 

those with a single diagnosis and healthy controls (t = 1.06, Cohen’s d = 0.09, 95% 

CI = [−0.05,∞), Pone-tailed = 0.64). 

Furthermore, in the case–control cohort STRATIFY/ESTRA (aged 23 years)34, the NP factor 

reconstructed from the SST was significantly higher in individuals with any psychiatric 

diagnoses (N = 369) than in healthy controls (N = 64; t = 4.50, Cohen’s d = 0.61, 95% 

CI = [0.39,∞), Pone-tailed = 4.43 × 10−6) and for each diagnosis alone (for anorexia nervosa, 

N = 55, t = 2.47, Cohen’s d = 0.45, 95% CI = [0.15,∞), Pone-tailed = 0.007; for alcohol abuse, 

N = 127, t = 4.53, Cohen’s d = 0.69, 95% CI = [0.44,∞), Pone-tailed = 5.22 × 10−6; for bulimia 

nervosa, N = 44, t = 2.51, Cohen’s d = 0.49, 95% CI = [0.17,∞), Pone-tailed = 0.007; for MDD, 
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N = 143, t = 4.19, Cohen’s d = 0.63, 95% CI = [0.38,∞), Pone-tailed = 2.07 × 10−5; the same 

control sample Ncontrol = 64 was used for all diagnoses; Table 2). Notably, no significant result 

was observed for the MID task, which might be due to the gradual disassociation between the 

NP factor scores generated from the SST (inhibitory control) and the MID task (reward 

sensitivity) with brain maturation (for IMAGEN at age 14, N = 1,750, r = 0.32, 95% 

CI = [0.28,0.36], t = 14.12, Ptwo-tailed = 5.85 × 10−43; for STRATIFY/ESTRA at age 23, 

N = 305, r = 0.03, 95% CI = [−0.08,0.14], t = 0.52, Ptwo-tailed = 0.70; rdifference = 0.29, Z = 5.04, 

Ptwo-tailed = 4.65 × 10−7). 

Finally, we explored whether the NP factor identified during reward processing and inhibitory 

control could be generalized to predict symptoms on the basis of a highly related NP factor 

derived from the same FC using resting-state fMRI (N = 1,002, r = 0.26, 95% CI = [0.20,0.31], 

t = 8.51, Ptwo-tailed = 2.22 × 10−16), that is, the most abundant fMRI data that are widely 

available for most population-based and clinical neuroimaging data, and considered as a 

nonspecific proxy of task-based FC35. In the IMAGEN dataset, the NP factor established with 

resting-state connectivity showed a significant association with externalizing symptoms at age 

19 (N = 931, r = 0.063, 95% CI = [0.01,∞), t = 1.91, Pone-tailed = 0.014; Table 1). Additionally, 

for healthy adults from the population-based HCP dataset (average age of 29 years), the 

resting-state NP factor was significantly associated with externalizing symptoms (N = 1,081, 

r = 0.075, 95% CI = [0.03,∞), t = 2.47, Pone-tailed = 0.007; Table 1). This association was further 

validated in the clinical ADHD-200 dataset, which showed significantly higher NP factor 

scores in individuals with ADHD (N = 292) compared with those in the control group (aged 

11 years, N = 228, t = 3.40, Cohen’s d = 0.30, 95% CI = [0.15,∞), Pone-tailed = 7.25 × 10−4; Table 

2). 

Discussion 

In this study, using a large longitudinal neuroimaging genetic cohort, we identified a reliable 

neural endophenotype (that is, the NP factor) of behavioral symptoms for multiple mental 

disorders, with implications for early prevention and therapeutics in psychiatry. 

We constructed the crossdisorder brain signature through the intersection of externalizing and 

internalizing edges, rather than identifying the neural correlates associated with the 

behaviorally defined general p factor36, which was recently criticized for its 

oversimplification8. In other words, we assumed that the neural substrates underlying general 

psychopathology were homogeneously associated with all psychiatric symptoms. Indeed, we 

also identified a large quantity of dissensus crossdisorder edges between externalizing and 

internalizing symptoms. However, despite their large quantity, these dissensus edges did not 

explain more variance than the consensus edges (that is, the NP factor) at age 14 (Fig. 2c). 

Furthermore, unlike the consensus edges, the dissensus edges lost most of their behavioral 

associations at age 19 (Fig. 2c), which could explain the surge of comorbid externalizing and 

internalizing disorders since late adolescence37, that is, when the consensus edges or the NP 

factor begin to dominate the associations with behavioral measures. 

The transdiagnostic NP factor mainly targeted top-down regulatory prefrontal circuits, such as 

the frontoparietal, superior medial frontal and salience networks. This is in line with previous 

findings that altered activations or gray matter volume in these cognitive networks may have 

further implications in emotional and reward and punishment processing, which leads to the 

wide range of psychiatric symptoms seen with both fMRI and structural MRI studies38,39. 

However, whereas previous research overwhelmingly identified reduced transdiagnostic 

neural substrates (that is, hypoactivation, hypoconnectivity and decreased gray matter 
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volume; Supplementary Table 11), the NP factor identified in this study manifested with 

hyperconnectivity of prefrontal-related neural circuits underlying general psychopathology. 

The hyperconnectivity (or hyperactivation) of prefrontal circuits in psychiatric disorders is 

usually explained as a neural compensation of executive resources to the less efficient 

integration of bottom-up sensory information9,39,40. However, Cabeza et al.41 argued that, 

when associated with cognitive deficits, hyperfunctioning prefrontal circuits might not 

necessarily represent a protective compensation effect but rather a disruption of the efficacy 

of executive control. 

Indeed, hyperconnectivity of the NP factor may result from delayed brain development. 

During adolescence, the brain undergoes the maturational processes of synaptic pruning and 

synapse stabilization42 to improve the efficiency of information transmission in the brain, 

leading to gradually reduced gray matter volume in the healthy brain over time. However, 

such a reduction (from ages 14 to 19) was significantly inhibited in individuals with a higher 

NP factor score (N = 1,132, r = −0.176, 95% CI = [−0.23,−0.12], t = −6.01, Ptwo-

tailed = 2.50 × 10−9), which indicates atypical trajectories of neural circuit maturation in 

individuals with high NP factor scores. Furthermore, compared with the somatosensory and 

motor cortices, the synaptic elimination process in the frontal and parietal lobes is delayed and 

prolonged during adolescence. Therefore, both brain regions might be more vulnerable to 

maldevelopment42, which is consistent with our observation that the NP factor is enriched in 

the frontal and parietal lobes. Finally, individuals with higher NP factor scores at baseline and 

follow-up showed increased behavioral symptoms and widespread deficits of cognitive 

control, which is a function long associated with prefrontal and parietal cortices. 

Remarkably, we found the NP factor is associated with IGSF11, a gene implicated in the 

neuronal adhesion molecule that binds to and stabilizes AMPA receptors regulating synapse 

stabilization31. The upregulation of synaptic adhesion molecules prevents the process of 

synaptic pruning43, which is the signature morphological event of late brain maturation during 

adolescence44. Expression of IGSF11 decreases from adolescence to adulthood, which might 

mediate the developmental trajectory of the NP factor during this period. Therefore, genetic 

evidence convincingly suggests the proposed NP factor represents an endophenotype of 

prefrontal delayed development across externalizing and internalizing symptoms. 

The NP factor identified in adolescents was generalizable across multiple developmental 

periods and showed consistent prediction of multiple behavioral symptoms (such as ADHD, 

CD, anxiety and depression) in population-based data of preadolescents (ABCD, aged 10–11 

years), adolescents (IMAGEN, aged 14 years) and young adults (IMAGEN, aged 19 years) 

and clinical data of young adults (STRATIFY/ESTRA, aged 23 years). Many psychiatric 

disorders emerge during the transition from adolescence to adulthood45,46,47, that is, the period 

in which the brain undergoes its final phase of maturation48. Therefore, the NP factor 

identified during this critical period may mark the fast-evolving and most vulnerable neural 

network from preteenager to adult45, thus revealing the neuropsychopathological mechanisms 

underlying the behavioral symptoms related to psychiatric disorders, before onset of clinical 

illness49. 

Nevertheless, more rigorous experimental studies are needed to clarify the causal mechanisms 

underlying this NP factor. Additionally, although we focused on a general 

neuropsychopathology in this study, factors of other more specific forms of psychopathology 

(such as externalizing, internalizing and thought disorder psychopatholgoies) should also play 

essential roles. Therefore, future studies are required to elucidate the dynamic interaction 

between the general and specific neuropsychopathologies that may further contribute to the 
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development of psychiatric comorbidity. It should also be noted that, although the primary 

nonclinical, large-scale, population-based datasets used in this study were designed to 

represent the broader population (that is, no exclusion criterion was set for mental health 

status) from preadolescence to early adulthood (a critical development period in which the 

onset of most psychiatric disorders peaks4,5), the recruitment of these studies may still suffer 

from certain sampling biases (for instance, the IMAGEN sample was primarily recruited from 

middle-class schools and might underrepresent participants with the most severe psychiatric 

symptoms50). Therefore, despite the large sample sizes in our population-based data 

(IMAGEN and ABCD), these data may have lower base rates of psychiatric disorders, 

especially for extreme cases, than in the broader population. Therefore, future studies need to 

have longitudinal data from the same participants, with sufficient representations of the most 

severe symptoms, to verify whether the NP factor behaves in a dimensional manner (that is, 

either quantitatively or qualitatively differentiated between clinical participants and healthy 

controls) and could be extended to other developmental periods, such as middle and late 

adulthood. 

In conclusion, we established a transdiagnostic NP factor that could be generalized to multiple 

large-scale, population-based and clinical neuroimaging datasets and is persistent from 

preadolescence to early adulthood. The NP factor could bridge the genetic substrates of 

neurodevelopmental processes and higher-order cognitive deficits. These results demonstrated 

that the NP factor could serve as a reliable neuropsychopathological biomarker of psychiatric 

comorbidity, substantially advancing our knowledge in stratified psychiatric medicine. 

Methods 

Study protocol 

We investigated the multivariate associations between behavioral symptoms and task-based 

FC (MID task, SST and emotion reactivity task) with the widely used CPM23,51. The task-

based connectome prediction analysis was conducted in the population-based IMAGEN 

sample of children aged 14 years. Additional analyses were then performed to discover the 

relationships between behavioral symptoms and crossdisorder neural circuits. Next, the 

predictive and crossdisorder connectome was investigated at several levels, using behavioral, 

longitudinal, genetic and clinical data. Notably, because psychiatric comorbidity is common 

in both males and females, we mainly focused on identifying the crossdisorder neural circuits 

across the whole population, not specifically for each sex. 

IMAGEN 

IMAGEN is a large-scale longitudinal neuroimaging–genetics cohort study (N = 2,000 at age 

14, N = 1,300 at age 19) conducted to understand the biological basis of individual variability 

in psychological and behavioral traits and their relationship to common psychiatric disorders. 

The study involves a thorough neuropsychological, behavioral, clinical and environmental 

assessment of each participant. Participants also undergo biological characterization with the 

collection of T1-weighted structural MRI, task-based fMRI and genetic data. In this 

investigation, we used task and resting-state MRI, genetic and behavioral data. Notably, as a 

population-based approach, IMAGEN has balanced sample sizes for male and female 

participants (based on self-reported sex). 
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Development and Well-Being Assessment and Strengths and Difficulties 

Questionnaire 

Behavioral symptoms of the IMAGEN participants were assessed using screening questions 

from the Development and Well-Being Assessment (DAWBA)52 and the Strengths and 

Difficulties Questionnaire (SDQ)53. DAWBA is a wide-ranging psychiatric screening 

questionnaire that was previously used to define subthreshold clinical symptoms in 

neuroimaging studies of subclinical psychopathology54. The SDQ was also used in this 

investigation because it contributes to the assignment of diagnostic status in the DAWBA52. 

At age 14, the parent-rated externalizing symptoms comprised ADHD (23 items), ODD (11 

items), CD (10 items) and ASD (7 items). The child-rated internalizing symptoms included 

GAD (7 items), depression (8 items), SP (13 items) and ED (5 items). The full set of 

psychiatric questions asked in our investigation can be found in Supplementary Table 1. The 

choice of using different versions of questionnaires (that is parent-rated externalizing 

symptoms and child-rated internalizing symptoms) at age 14 was grounded on findings that 

externalizing problem scores from parents are more reliable than those from children 

themselves, and vice versa55. At age 19, however, because parent-rated questionnaires were 

unavailable, we used child-rated questionnaires for both externalizing and internalizing 

symptoms (Supplementary Table 1). 

DAWBA also provides a diagnostic output for common psychiatric disorders, that is, the 

likelihood of a clinical diagnosis being made after rating. Of the 1,750 IMAGEN participants 

at age 14, 134 had a high risk for at least one diagnosis (that is, they scored 4 or 5, with over 

50% chance of being diagnosed), and 39 participants met the criteria for two or more 

diagnoses. More specifically, 93 participants were likely to have one or more externalizing 

disorders (24 with ADHD, 45 with ODD, 59 with CD and 1 with ASD), and 46 participants 

were likely to have one or more internalizing disorders (16 with GAD, 21 with depression, 5 

with ED and 14 with SP; see Extended Data Table 1 for more detail). 

Monetary incentive delay task 

Participants performed a modified version of the MID task (Supplementary Fig. 1) to examine 

neural responses to reward anticipation and reward outcome56. The task consisted of 66 10-

second trials. In each trial, participants were presented with one of three cue shapes (cue, 

250 ms) denoting whether a target (white square) would subsequently appear on the left or 

right side of the screen and whether zero, two or ten points could be won in that trial. After a 

variable delay (4,000–4,500 ms) of fixation on a white crosshair, participants were instructed 

to respond with a left or right button press as soon as the target appeared. Feedback on 

whether any, and how many, points were won during the trial was presented for 1,450 ms 

after the response (Supplementary Fig. 1). With a tracking algorithm, task difficulty (that is, 

target duration varied between 100 and 300 ms) was individually adjusted, such that each 

participant successfully responded on ~66% of trials. Participants had first completed a 

practice session outside the scanner (~5 minutes) during which they were instructed that, for 

every five points won, they would receive one food snack in the form of small chocolate 

candies. Our study used the task conditions consisting of hit anticipation, hit feedback and 

miss feedback. 

Stop-signal task 

Participants performed an event-related SST (Supplementary Fig. 2) designed to study neural 

responses to successful and unsuccessful inhibitory control57. The task comprised go trials and 
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stop trials. During go trials (83%, 480 trials), participants were presented with arrows pointing 

either to the left or to the right. Participants were then instructed to make a button response 

with their left or right index finger, corresponding to the direction of the arrow. In the 

unpredictable stop trials (17%, 80 trials), the arrows pointing left or right were followed (on 

average 300 ms later) by arrows pointing upwards; participants were instructed to inhibit their 

motor responses during these trials. A tracking algorithm changes the time interval between 

the go and stop signal onsets according to each participant’s performance on previous trials 

(average percentage of inhibition over previous stop trials, recalculated after each stop trial), 

resulting in 50% successful and 50% unsuccessful inhibition trials. The intertrial interval was 

1,800 ms. The tracking algorithm of the task ensured that participants were successful on 50% 

of stop trials and worked at the edge of their own inhibitory capacity. Our study used the SST 

measures consisting of stop success, stop failure and go wrong. 

Emotional face task 

The EFT was adapted from Grosbras et al.58. Participants watched 18-second blocks of either 

a face movie (depicting anger or neutrality) or a control stimulus. Each face movie showed 

black and white video clips (200–500 ms) of male or female faces. Five blocks each of angry 

and neutral expressions were interleaved with nine blocks of the control stimulus. Each block 

contained eight trials of six face identities (three female). The same identities were used for 

the angry and neutral blocks. The control stimuli were black and white concentric circles that 

expanded and contracted at various speeds, roughly matching the contrast and motion 

characteristics of the face clips. Our study used the EFT task conditions of neutral and angry 

faces. 

Image acquisition 

fMRI data were acquired at eight IMAGEN assessment sites with 3 T MRI scanners from 

different manufacturers (Siemens, Philips, General Electric, Bruker). The scanning variables 

were specifically chosen to be compatible with all scanners. The same scanning protocol was 

used at all sites. In brief, high-resolution T1-weighted 3D structural images were acquired for 

anatomical localization and coregistration with the functional time series. In addition, blood 

oxygen level-dependent (BOLD) functional images were acquired with gradient-echo, echo-

planar imaging sequence. For all tasks, each volume consisted of 40 slices aligned to the 

anterior commission–posterior commission line (2.4-mm slice thickness, 1-mm gap). The 

echo time was optimized (30 ms, with repetition time (TR) of 2,200 ms) to provide reliable 

imaging of the subcortical areas. 

Task-based functional image preprocessing 

Task-based fMRI data were first prepreprocessed using SPM8 (Statistical Parametric 

Mapping, http://www.fil.ion.ucl.ac.uk/spm). Spatial preprocessing included slice time 

correction to adjust for time differences due to multislice imaging acquisition, realignment to 

the first volume in line, nonlinearly warping to the MNI space (on the basis of a custom echo-

planar imaging template (53 × 63 × 46 voxels) created from an average of the mean images 

from 400 adolescents), resampling at a resolution of 3 × 3 × 3 mm3 and smoothing with an 

isotropic Gaussian kernel of 5 mm full-width at half-maximum. 

Network construction 
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To estimate the condition-specific FC, we used the CONN toolbox (version 16.h) with the 

weighted generalized linear model method. Task condition regressors, 21 covariate regressors 

(21 covariate regressors consisting of 12 motion regressors (3 translations, 3 rotations and 3 

translations shifted 1 TR before, and 3 translations shifted 1 TR later) and 9 additional 

columns corresponding to the long-term effects of the movement (3 nuisance variables for the 

white matter and 6 nuisance variables for ventricles, commonly referred to as CompCor 

correction59) were first regressed out from the raw BOLD signal of each region of interest 

(ROI). The residual signals were then further fed into weighted generalized linear models to 

investigate conditional time-series correlations (that is, the conditional FC) between any pairs 

of ROIs, where the temporal weight function for each condition was calculated as the 

corresponding, but now rectified, task condition regressor (that is, only time points expected 

with positive BOLD signals count). This approach not only amplifies the expected 

hemodynamic delay to each task condition but also deweights the initial and final scans when 

estimating functional correlation measures to avoid spurious jumps in BOLD signal and 

reduces the potential crosstalk between adjacent task conditions60. After this procedure, 

ROI:ROI FCs were calculated on the basis of the brain template from the 268-node functional 

brain atlas22 (Supplementary Fig. 3). 

Connectome-based predictive modeling 

We used CPM (Supplementary Fig. 4) to predict the participants’ behavioral symptoms from 

whole-brain, task-based FC. CPM is a recently developed method for identifying functional 

brain connections related to a behavior variable of interest, which is then used to predict 

behavior in novel participants (that is, participants whose data were not used in model 

creation)23. The CPM procedure was recently described in studies reporting its application to 

cognitive and psychiatry variables, such as fluid intelligence, attention control and 

ADHD51,61,62,63. The CPM processing pipeline is available online 

(https://www.nitrc.org/projects/bioimagesuite/). We slightly modified the original CPM, 

which used the leave-one-out crossvalidation, to a 50-fold crossvalidation process to hasten 

the process while maintaining robustness. In the first step, we randomly divided the data into 

50 folds, where one fold was left out as the testing dataset while the other 49 folds were used 

as the training dataset. Next, a vector of behavioral scores (for example, ADHD symptoms) 

was associated with the edge of the connectome (that is, the FC matrix) across participants 

from the training dataset, with site and handedness being included as covariates. Then, a 

default threshold23 (that is, P < 0.01 in our study) was applied to retain only edges that were 

significantly associated (either positively or negatively) with behavioral symptoms in the 

training dataset. Analyses were also repeated with three additional thresholds (for example, 

0.05, 0.005 and 0.001), demonstrating similar predictive performance (Supplementary Table 

2). Next, the sum of the weights of positive and negative edges (negative edges will be 

multiplied by −1 before summing up) was calculated for each individual and entered into a 

linear regression model to estimate the relationship between the summed edge strength and 

the observed behavior in the training dataset. In the testing dataset, the summed edge strength 

of each individual was submitted to the corresponding linear model estimated in the training 

dataset to generate the predicted behavior score. This process was repeated 50 times, with 

predicted behavior scores in each testing fold established on the basis of the remaining 49-

fold data. Finally, Spearman’s correlation was applied to estimate the model performance 

between predicted and actual behavior scores across all individuals. We repeated the CPM 

1,000 times and continued further analyses using the edges selected in over 95% of models to 

select the most robust edges. For more details on CPM, see Shen et al.23. 

Neuropsychopathology factor 
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The NP factor was constructed to represent longitudinally consistent and generalizable 

transdiagnostic brain signatures across externalizing and internalizing spectra. First, by 

applying CPM on condition-specific functional neural networks (that is, the functional 

connectome derived for each task condition), we identified crossdisorder edges that were 

associated with at least one externalizing symptom and one internalizing symptom 

simultaneously. Then, for each task condition, we investigated if the number of crossdisorder 

edges identified was significantly higher than a random observation using a permutation test 

(see Reliability assessment using permutation tests for more details). Only the significant, and 

therefore informative, task conditions and their crossdisorder edges were retained for further 

analyses. Next, given that different combinations of association directions with externalizing 

and internalizing symptoms have distinct neurobiological implications, we stratified these 

crossdisorder edges into four groups to improve interpretability: positive–positive (or 

negative–negative) edges that were associated with both externalizing and internalizing 

symptoms positively (or negatively); positive–negative edges that were associated positively 

with externalizing symptoms but negatively with internalizing symptoms; and negative–

positive edges of negative associations with externalizing symptoms but positive associations 

with internalizing symptoms. Lastly, the four groups of crossdisorder edges were investigated 

for longitudinal consistency on the basis of their predictive performance on both externalizing 

and internalizing symptoms in the follow-up study at age 19, and the longitudinally consistent 

crossdisorder edges (that is, the FC strength) were summed to generate the NP factor. Please 

note that only positive–positive edges (that is, edges positively associated with both 

internalizing and externalizing symptoms) were found to be longitudinally consistent and used 

to compute the NP factor. Therefore, the NP factor may serve as a transdiagnostic neural 

indicator for comorbid externalizing and internalizing symptoms. 

Reliability assessment using permutation tests 

To investigate which task conditions provided reliable crossdisorder edges, we implemented 

permutation tests evaluating if identified crossdisorder edges from each task condition were 

indeed informative, that is, if the number of edges identified for the given condition was 

significantly larger than that in a random discovery (Supplementary Fig. 5). Due to the time-

consuming nature of the proposed CPM analysis (1,000 repetitions of 50-fold crossvalidation 

as described in Connectome-based predictive modeling), the number of permutations was set 

as 1,000, which was sufficient to provide an accurate estimation of a P value as small as 0.01. 

This permutation process was also used to provide unbiased P values for the association of the 

crossdisorder network with behavioral symptoms. 

Generalization datasets 

To investigate whether the NP factor identified with the adolescent IMAGEN dataset using 

the task-based connectomes could be generalized into other developmental periods and fMRI 

states, we used multiple, large-scale, population-based datasets (ABCD cohort33 and the 

HCP64) and clinical case–control datasets (STRATIFY/ESTRA34 and ADHD-20065). 

ABCD cohort 

The dataset used for this study was selected from the Annual Curated Data Release 

(https://data-archive.nimh.nih.gov/abcd) of the ABCD cohort, which recruited 11,875 children 

between 9 and 11 years of age from 21 sites across the USA66. MRI data in the ABCD study 

were collected from different 3 T scanner platforms (Siemens Prisma, General Electric 

MR750 and Philips Achieva dStream). To minimize the biases introduced by multiple 
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platforms, we only included MRI data from the most frequent manufacturer, Siemens Prisma; 

data from this manufacturer comprised 5,968 participants from 13 sites. By examining the 

similarity of brain activations across these 13 sites, we further selected 2,326 participants with 

consistent activation patterns from 4 sites. After quality control67, 1,966 participants of the 

MID task and 1,837 participants of the SST were included in further analysis. ABCD has 

balanced sample sizes for boys and girls (based on self-reported sex) (Table 1). To construct 

the NP factor in the ABCD dataset, with the same positive–positive edges used to establish 

the NP factor in the IMAGEN cohort, we extracted the corresponding FC of reward 

anticipation and reward positive feedback from the MID task and FC of the stop success and 

stop failure from the SST. The sum of FCs for the MID task and SST was the corresponding 

NP factor for the ABCD. For psychiatric symptoms, we used the Parent Child Behavior 

Checklist Scores (abcd_cbcls01) to assess the dimensional psychopathology in children68. The 

summed scores of externalizing and internalizing symptoms were used in further analysis. 

The ABCD Parent Diagnostic Interview for Diagnostic and Statistical Manual of Mental 

Disorders, Fifth Edition (DSM-5) provides a diagnostic output for common psychiatric 

disorders (abcd_ksad01). Diagnosis of ASD was provided from a clinical assessment 

questionnaire (abcd_screen01). Because the morbidity of SP (21.5%) with abcd_ksad01 in the 

ABCD dataset was much higher than that of other pediatric epidemiologic investigations of 

SP (4.8%)69,70, we excluded this diagnostic information in the clinical relevance analysis. For 

all analyses of ABCD data, we included site, family, handedness and sex as covariates in a 

mixed model71. 

HCP 

The dataset used for this investigation was selected from the March 2017 public data release 

from the HCP, WU-Minn Consortium. HCP has balanced sample sizes for men and women 

(based on self-reported sex; Table 1). Our sample included 1,081 participants (aged 22–35 

years, mean age 31 years) scanned on a 3 T Siemens connectome-Skyra scanner. More details 

of participants and collection and preprocessing of data are provided at the HCP website 

(http://www.humanconnectome.org/). Externalizing symptoms were measured using the 

Achenbach Adult Self-Report (ASR) Syndrome Scales72 

(ASR_Computed_Externalizing_Adjusted_T). For all analyses of HCP data, we included site, 

handedness and sex as covariates. 

Stratify and ESTRA 

STRATIFY and ESTRA recruited participants (ages 19–25) with alcohol use disorder or 

major depression (STRATIFY), anorexia nervosa or bulimia nervosa (ESTRA), and controls 

with no mental disorder diagnosis at three sites (Berlin, London and Southampton). The 

proportions of men and women (based on self-reported sex) varied across different mental 

health disorder groups (Table 1). Furthermore, the protocol of both studies was harmonized to 

match the IMAGEN protocol. These datasets collected task-based neuroimaging data of the 

SST and MID task. After quality control (the same quality control procedures as with the 

ABCD dataset67), 267 cases and 46 controls of the MID task and 380 cases and 64 controls of 

the SST were included in further analysis. For all analyses of Stratify and ESTRA data, we 

included site, handedness and sex as covariates. 

ADHD-200 

ADHD-200 is a grassroots initiative dedicated to accelerating the scientific community’s 

understanding of the neural basis of ADHD (aged 7–21 years). Males are predominant in the 
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case group whereas both sexes (based on self-reported sex) are balanced in the control group 

(Table 1). Inclusion criteria included no history of neurological diseases and other chronic 

medical conditions and estimates of full-scale IQ above 80, and psychostimulant drugs were 

withheld at least 24–48 hours before scanning. Data were downloaded from the ADHD-200 

consortium website (http://fcon_1000.projects.nitrc.org/indi/adhd200). In our study, we used 

data from four sites (Peking University, Kennedy Krieger Institute, New York University 

Child Study Center and Oregon Health & Science University) that recruited both participants 

with ADHD and control participants without ADHD. In total, there were 228 cases and 292 

controls. For all analyses of ADHD-200 data, we included site, handedness and sex as 

covariates. 

Genotyping for the IMAGEN study 

DNA purification and genotyping were performed by the Centre National de Génotypage. 

DNA was extracted from whole-blood samples (∼10 ml) preserved in BD Vacutainer EDTA 

Tubes (Becton, Dickinson and Company) using the Gentra Puregene Blood Kit (QIAGEN), 

according to the manufacturer’s instructions. SNPs with call rates of <98%, minor allele 

frequency <1% or deviation from the Hardy–Weinberg equilibrium (P < 1.00 × 10−4) were 

excluded from analyses. Individuals with an ambiguous sex code, excessive missing 

genotypes (failure rate >2%) and outlying heterozygosity (heterozygosity rate of 3 s.d. from 

the mean) were also excluded. 

Polygenic risk scores 

To calculate the PRSs of depression, ADHD and intelligence, we used previously published 

GWASs of ADHD28, depression29 and intelligence30. The discovery depression GWAS 

consisted of 135,458 cases and 344,901 controls, the ADHD study consisted of 20,183 cases 

and 35191 controls and the IQ study included 269,867 individuals. We then used PRSice 

software (http://prsice.info/) to calculate the corresponding PRS. The clumping process was 

applied to retain only SNPs with the smallest P value for each linkage disequilibrium block 

(combined with a sliding window process to exclude any less significant SNPs with an 

r2 < 0.1 in 250-kb windows). PRSs were calculated at P value thresholds between 0 and 0.5 in 

increments of 0.01, and we used the mean PRSs of depression, ADHD and intelligence for 

subsequent analyses73. 

Cognition–behavior phenotypes 

Cambridge Cognition Battery 

The Cambridge Cognition Battery (http://www.cambridgecognition.com/) comprised the 

Spatial Working Memory task (number of errors and strategies), the Cambridge Guessing 

Task (CGT; risk taking, quality of decision-making, delay aversion, deliberation time, overall 

proportion bet, risk adjustment), the Rapid Visual Information Processing task and the 

Affective Go-No Go task (mean correct latency for positive and negative stimuli, number of 

omission errors for positive and negative stimuli). The CGT quality of decision-making is the 

proportion of trials on which the participant chooses the most likely outcome. The CGT 

deliberation time is the reaction time to choose the color of the box. The overall bet is the 

overall bet across the trials. CGT risk taking is mean proportion of available points the 

participant stakes at each trial. CGT delay aversion is the difference between the risk-taking 

score in the descending and the ascending conditions. CGT risk adjustment is the degree to 

which a participant adjusts their risk taking according to the ratio of colored boxes, calculated 

https://www.nature.com/articles/s41591-023-02317-4#Tab1
https://www.nature.com/articles/s41591-023-02317-4#ref-CR28
https://www.nature.com/articles/s41591-023-02317-4#ref-CR29
https://www.nature.com/articles/s41591-023-02317-4#ref-CR30
http://prsice.info/
https://www.nature.com/articles/s41591-023-02317-4#ref-CR73
http://www.cambridgecognition.com/


as [2 × (proportion of points staked (%) at 9:1) + (% 8:2) − (% 7:3) − 2 × (% 6:4)] ÷ CGT risk 

taking. The Rapid Visual Information Processing task is a 10-minute test that measures 

sustained attention by presenting a rapid stream of digits and requiring participants to detect 

target sequences. A white box is displayed in the center of the screen, in which digits 2–9 are 

rapidly presented at 100 digits per minute. Participants are required to detect target sequences 

(for example, 2-4-7, 3-5-7 or 4-6-8) and respond to this target sequence as quickly as possible. 

Outcome measures include a signal detection theory measure of target sensitivity and mean 

response latency. 

IQ 

We measured intelligence using the fluency and verbal components of the Wechsler 

Intelligence Scale for Children, Fourth Edition74. 

Delay discounting 

We used the Monetary-Choice Questionnaire, as described by Kirby75. The Monetary-Choice 

Questionnaire is an efficient and reliable measurement of delay discounting that has been 

validated in adolescents76. For each participant, we estimated the k values that reflect how one 

discounts a reward value with the delay required to obtain it. The questionnaire contains 27 

dichotomous-choice items pitting a smaller immediate reward against a larger delayed reward 

for three levels of reward magnitude (small, medium and large). Higher k coefficients in a 

hyperbolic discounting equation for each reward level represent greater preference for small 

immediate rewards and higher impulsivity. The geometric mean was calculated and 

logarithmically transformed to use in our analyses. 

Personality 

Substance Use Risk Personality Scale 

The Substance Use Risk Personality Scale (23 items, self-questionnaire) was used to measure 

sensation seeking, impulsivity, anxiety sensitivity and negative thinking subscores, and has 

been shown to be related to substance use in adolescents77. 

NEO Personality Inventory 

The NEO Personality Inventory (60 items, self-questionnaire) explores the big-five domains 

of personality: neuroticism, extraversion, openness, agreeableness and conscientiousness78. 

Temperament and Character Inventory–Revised 

The Temperament and Character Inventory–Revised (36 items)79 was used to measure 

excitability, impulsiveness, reserve, disorderliness and their combined measure of novelty 

seeking. 

Substance use 

Alcohol 

Alcohol abuse was assessed using the screening questions from the Alcohol Use Disorders 

Identification Test (AUDIT, ten items)80. The AUDIT was developed by the World Health 
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Organization as a simple way to screen and identify people who are at risk of developing 

alcohol problems. AUDIT focuses on identifying the preliminary signs of hazardous drinking 

and mild dependence. It is used to detect alcohol problems experienced within the last year, 

and it is one of the most accurate alcohol screening tests available. 

Smoking 

Smoking behavior was assessed as the frequency (that is, cigarettes per day) of smoking 

during the last 30 days using the European School Survey Project on Alcohol and Other 

Drugs81. 

Environmental risk 

Childhood Trauma Questionnaire 

The Childhood Trauma Questionnaire (CTQ)82 was used to assess childhood maltreatment 

across childhood and adolescence. It consists of five domains: emotional abuse, emotional 

neglect, physical abuse, physical neglect and sexual abuse. The scores from the five domains 

was summed for a total CTQ score; the higher the score the greater the severity of 

maltreatment. 

School bully 

School bully behavior was measured using an adapted questionnaire grounded on the Health 

Behaviour in School-aged Children survey. These questions were initially used in the revised 

Olweus Bully/Victim Questionnaire83. 

Family stress 

Family stress was measured using the family stress and socioeconomic item from the 

DAWBA. A larger score for this item indicates greater family stress. 

Family drinking 

Family drinking was measured using the parent AUDIT. 

Other risks 

Body mass index 

Recorded weight and height were used to calculate the body mass index (weight in kilograms 

per height in meters squared). 

Pregnancy and Birth Questionnaire 

The Pregnancy and Birth Questionnaire was used to collect information during the pregnancy; 

it consisted of mother and father data, medical condition of mother (‘did the mother take any 

prescribed medication during pregnancy?’), smoking exposure (‘how many cigarettes did the 

mother smoke per day before pregnancy?’) and birth weight (‘what was the birth weight of 

the child?’). 
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Ethical approval 

The IMAGEN study was approved by local ethics research committees at each research site: 

King’s College London, University of Nottingham, Trinity College Dublin, University of 

Heidelberg, Technische Universität Dresden, Commissariatà l’Energie Atomique et aux 

Energies Alternatives and University Medical Center. Informed consent was sought from all 

participants and a parent/guardian of each participant. The ABCD study conforms to each 

site’s institutional review board’s rules and procedures, and all participants provided informed 

consent (parents) or informed assent (children). The WU-Minn HCP Consortium obtained full 

informed consent from all participants, and research procedures and ethical guidelines were 

followed in accordance with the institutional review boards. ADHD-200 is a multicenter 

study, and each site was approved by the local research ethics review board. Signed informed 

consent was obtained from all participants or their legal guardians before participation. 

STRATIFY/ESTRA was approved by the London – Westminster Research Ethics Committee, 

and signed informed consent was obtained from all participants. Compensation for time and 

travel costs were provided for participants in the above cohorts, as approved by the ethical 

committees. 

Reporting summary 

Further information on research design is available in the Nature Portfolio Reporting 

Summary linked to this article. 

Data availability 

IMAGEN data are available from a dedicated database at https://imagen2.cea.fr. 

STRATIFY/ESTRA data are available from the IMAGEN database at https://imagen2.cea.fr. 

ABCD data are available from a dedicated database at https://abcdstudy.org/. HCP data are 

available from a dedicated database at https://www.humanconnectome.org/. ADHD-200 data 

are available from a dedicated database at http://fcon_1000.projects.nitrc.org/indi/adhd200. 

Shen 268 parcellation is available at https://www.nitrc.org/frs/?group_id=51. 

Code availability 

The code that supports the findings of this study is available on GitHub at 

https://github.com/xic199wzr/NP-factor. 

 

https://www.nature.com/articles/s41591-023-02317-4#MOESM2
https://www.nature.com/articles/s41591-023-02317-4#MOESM2
https://imagen2.cea.fr/
https://imagen2.cea.fr/
https://abcdstudy.org/
https://www.humanconnectome.org/
https://www.nitrc.org/frs/?group_id=51
https://github.com/xic199wzr/NP-factor

