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Abstract 

Children who are adept at any one of the three academic 'R's (reading, writing and arithmetic) 
tend to be good at the others, and grow into adults who are similarly skilled at diverse 
intellectually demanding activities1, 2, 3. Determining the neuroanatomical correlates of this 
relatively stable individual trait of general intelligence has proved difficult, particularly in the 
rapidly developing brains of children and adolescents. Here we demonstrate that the trajectory 
of change in the thickness of the cerebral cortex, rather than cortical thickness itself, is most 
closely related to level of intelligence. Using a longitudinal design, we find a marked 
developmental shift from a predominantly negative correlation between intelligence and 
cortical thickness in early childhood to a positive correlation in late childhood and beyond. 
Additionally, level of intelligence is associated with the trajectory of cortical development, 
primarily in frontal regions implicated in the maturation of intelligent activity4, 5. More 
intelligent children demonstrate a particularly plastic cortex, with an initial accelerated and 
prolonged phase of cortical increase, which yields to equally vigorous cortical thinning by 
early adolescence. This study indicates that the neuroanatomical expression of intelligence in 
children is dynamic. 

 

Structural neuroimaging studies generally report a modest correlation (r = 0.3) between 
psychometric measures of intelligence and total brain volume6. Links between intelligence 
and specific regions of the brain may vary according to developmental stage: the anterior 
cingulate in children7, the orbitofrontal and medial prefrontal cortex in adolescents8, and the 
lateral prefrontal cortex in older adults9. Most previous studies infer developmental processes 
from purely cross-sectional data, an endeavour fraught with methodological complications10. 
Only one longitudinal study has linked cortical development with cognitive variation, 
demonstrating greater cortical thinning in the left dorsal frontal and parietal regions among 
children who gained more in a measure of verbal intelligence5. However, this study was 
limited by its small sample size (n = 45), narrow age range (5–11 yr), and consideration of 
only linear cortical change, whereas brain development generally follows more complex 
growth patterns7, 11. 

We characterized brain development from childhood to adulthood in a large group of typically 
developing subjects (n = 307), the majority of who had prospectively acquired repeated 
neuroanatomic scans (see the Methods). Subjects were stratified on the basis of Wechsler 
intelligence scales, which give a standardized 'intelligence quotient' (IQ) based on subtests 
assessing verbal and non-verbal knowledge and reasoning12. We examined the thickness of 
the cortex throughout the entire cerebrum, as it is a sensitive index of normal brain 
development5, 13, using a fully automated technique, and have validated these measurements 
by expert manual determination of cortical thickness and population simulations14, 15. We 
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reasoned that the trajectory of cortical development in children stratified on the basis of IQ 
would differ primarily in the prefrontal cortex, which has both structural and functional 
correlations with intelligence. The institutional review board of the National Institutes of 
Mental Health approved the research protocol, and written informed consent and assent were 
obtained from parents and children, respectively. 

We estimated Pearson's correlations between IQ and cortical thickness for all subjects (each 
subject contributing one scan), and found modest positive correlations throughout most of the 
frontal, parietal and occipital cortex, and similarly modest negative correlations in the anterior 
temporal cortex (Fig. 1 and Supplementary Table 1). Throughout most of the cerebral cortex, 
the correlations were not significant at an unadjusted P < 0.05. 

weiter auf nächster Seite mit Supplementary Table 1, dann Fig. 1 

http://www.nature.com/nature/journal/v440/n7084/full/nature04513.html#f1
http://www.nature.com/nature/journal/v440/n7084/suppinfo/nature04513.html


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

a, Pearson's correlations for all 307 subjects were generally positive and modest (P > 0.05), 
with r between 0 and 0.10 (green/yellow), except in the anterior temporal cortex (which 
showed a negative correlation, with r between 0 and -0.1; blue/purple). b, Correlations in 
different age groups showed that negative correlations were present in the youngest group, 
indicating that higher IQ was associated with a thinner cortex particularly in frontal and 
temporal regions. The relationship reverses in late childhood, with most of the cerebral cortex 
correlating positively with IQ. 

FIGURE 1. Correlations between IQ and cortical thickness. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dividing the sample into different age groups, however, revealed notable age-related changes. 
A predominantly negative correlation between IQ and cortical thickness in the early 
childhood group contrasted with later positive correlations, which peaked in late childhood, 
but were present in an attenuated form in the adolescent and early adult groups. The change in 
the valence of the correlation between IQ and cortical thickness was significant between the 
young and late childhood groups throughout the prefrontal cortex, and the left superior/middle 

temporal gyri. These age groups did not differ in gender composition ( 2 = 2.76; P = 0.62) or 
mean IQ (F3,303 = 1.58; P = 0.19), and there was no significant gender difference in the 
correlation between cortical thickness and IQ. 



 

We further characterized the development of the relationship between intelligence and cortical 
morphology using linear mixed-models, which allowed inclusion of all 629 scans. In the 
determination of cortical thickness, there was a significant interaction between IQ and age 
terms in the prefrontal cortex, suggesting that the relationship between cortical thickness and 
IQ varies with age (specifically cubic and quadratic age terms; see the Supplementary Figure). 

Supplementary Figure: Interaction between age terms and IQ 
 
Cortical thickness was regressed against IQ, age terms (linear, quadratic and cubic age) and 
the interaction of IQ and age 
terms. The t statistics for the interaction terms were visualized through projection onto a 
standard brain template. 
Regions where there was a significant interaction (applying a fdr 0.05) of IQ with the cubic 
age term are shown below; 
the interaction of IQ and the squared, but not the linear, age term was significant in the same 
regions. The analyses 
suggest that IQ significantly modulates the effect of the polynomial age terms on cortical 
thickness predominately in the 
prefrontal cortical regions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To explore this interaction, the sample was split into three IQ groups: superior, high and 
average intelligence. Prominent clusters of cortical points showing differences in cortical 
development between the intelligence groups lay bilaterally within the superior frontal gyri 
extending into the medial prefrontal cortex, and to a lesser extent in the middle and 
orbitofrontal cortices (Fig. 2). In each of these clusters, the trajectories for the local point of 
maximum trajectory difference and for the entire cluster were similar: the superior 
intelligence group started from a relatively thinner cortex, but then showed a marked increase 
in cortical thickness peaking at 11 yr. In contrast, the average intelligence group showed 
either a steady decline in cortical thickness throughout the age period covered (in orbitofrontal 
areas), or a short initial increase in cortical thickness which peaked at 7–8 yr (in superior 
frontal gyri). The trajectories of the high intelligence group followed an intermediate pattern, 
more strongly resembling the pattern of the average intelligence group, with no significant 
differences between these two groups in the clusters shown in Fig. 2 (all P > 0.10). 
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The brain maps (centre panel) show prominent clusters where the superior and average 
intelligence groups differ significantly in the trajectories of cortical development (t-statistic 
maps show areas of significant interaction between these IQ groups and the cubic age term). 
a, Graph showing the trajectories at the cortical point of maximum trajectory difference in the 
right superior frontal gyrus (point indicated in upper brain map). b–d, Graphs showing the 
trajectories of the mean thickness of all cortical points in the other clusters. The graph in d 
relates to the area indicated in the lower brain map. The age of peak cortical thickness is 
arrowed and significance values of differences in shapes of trajectories are given on the 
graphs. MNI, Montreal Neurological Institute. 

FIGURE 2. Trajectories of cortical change. 

 
 

Different developmental trajectories were also prominent in the posterior left hemisphere 
between the superior and average intelligence groups, specifically within the left middle 
prefrontal and inferior temporal gyri, and to a lesser extent the angular gyrus. The right 
hemisphere outside the frontal lobes showed trajectories of cortical development that did not 
differ significantly between groups. 

An overall decline in cortical thickness was noted in all groups, present either throughout the 
age period covered (average intelligence group) or starting by late childhood (high 
intelligence) or early adolescence (superior intelligence). Velocity curves derived using a 
first-order differential of the fitted cubic growth curves illustrate that the superior intelligence 
group had the most rapid rate of cortical thinning, whereas the high and average intelligence 
groups had similar, but slower, rates (Fig. 3). Thus, the relatively rapid increase in cortical 
thickness in the superior intelligence group was followed by a more rapid thinning. 
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The rate of change for the cluster of cortical points in the right superior and medial frontal 
gyrus, which showed a significant trajectory difference. Positive values indicate increasing 
cortical thickness, negative values indicate cortical thinning. The point of intersection on the x 
axis represents the age of maximum cortical thickness (5.6 yr for average, 8.5 yr for high, and 
11.2 yr for the superior intelligence group). 

FIGURE 3. Rate of change in cortical thickness. 

 

To illustrate the development of differences in cortical thickness between the superior and 
average intelligence groups, statistical maps representing group differences in the height of 
the developmental curves at each age were estimated from 7–16 yr (Fig. 4). Initially, the 
superior intelligence group had a relatively thinner cortex in superior prefrontal gyri, but then 
showed a rapid increase in cortical thickness. By 11 yr, regions of thicker cortex became 
apparent in the superior intelligence group—initially in anterior portions of the right superior 
and middle frontal gyri, spreading to involve more posterior regions of the right prefrontal 
cortex and the left superior and middle frontal gyri. By late adolescence, the accelerated rate 
of cortical loss in the most intelligent group leads to decreased regional differences. 

weiter auf nächster Seite 
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Group differences are represented by t-statistics (t > 2.6), and show that the superior 
intelligence group has a thinner superior prefrontal cortex at the earliest age (purple regions). 
There is then a rapid increase in cortical thickness (red, green and yellow regions) in the 
superior intelligence group, peaking at age 13 and waning in late adolescence. 

FIGURE 4. Developing differences in cortical thickness between the superior and average 
intelligence groups. 

 
 

The intelligence groups did not differ significantly in handedness or gender composition, but 
did in socio–economic status (F2,291 = 14.1; P < 0.001), which was correlated with IQ (r = -
0.35; P < 0.01). In the frontal clusters, where trajectories were most closely tied to 
intelligence, none of these variables contributed significantly to the final polynomial 
regression model (all P values >0.1). 

Thus, we have demonstrated that level of intelligence is related to the pattern of cortical 
growth during childhood and adolescence. The differing trajectories of cortical change are 
most prominent in the prefrontal cortex, congruent with functional magnetic resonance 
imaging (fMRI) studies showing that activation of the lateral prefrontal cortex is common to a 
range of intelligence tests, and that the magnitude of frontal cortical activation correlates 
highly with intelligence16, 17. 

Our longitudinal structural MRI images provide adequate resolution to describe an in vivo 
change in cortical thickness, but the nature of the underlying cellular events is largely 
unknown. A determinant of cerebral lamination in utero and perinatally is the emergence and 
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resolution of the subplate, which contains neurons, developing cortical afferents and their 
synapses18, 19. Proliferation of myelin into the peripheral cortical neuropil in childhood and 
adolescence is another possible mechanism influencing cortical thickness5, 20. Additionally, 
the formation and usage-dependent selective elimination of synapses21, which help to create 
and sculpt neural circuitry including those supporting cognitive abilities22, may contribute to 
changing cortical dimensions. The prefrontal cortex shows relatively late structural11 and 
metabolic23 maturation, and the prolonged phase of prefrontal cortical gain in the most 
intelligent might afford an even more extended 'critical' period for the development of high-
level cognitive cortical circuits. 

'Brainy' children are not cleverer solely by virtue of having more or less grey matter at any 
one age. Rather, intelligence is related to dynamic properties of cortical maturation. 

 

Methods 

Subjects 

Three hundred and seven unrelated children and adolescents with no personal or family 
history of psychiatric or neurological disorders were recruited (Supplementary Table 2). All 
subjects had age-appropriate versions of the Weschler intelligence scales. In 220 subjects, 
full-scale IQ was estimated from four subtests (vocabulary, similarities, block design and 
matrix reasoning), and in 87 children two subtests were used (vocabulary and block design). 
For longitudinal analyses, subjects were divided into three groups on the basis of full-scale IQ 
with the primary constraint of attaining a roughly equal number of total scans in each group. 
The groups were: superior intelligence (IQ range 121–149), high intelligence (IQ range 109–
120) and average intelligence (IQ range 83–108). All subjects were scanned at least once; 178 
participants (58%) had at least two scans; 92 (30%) had three or more scans; the mean 
interscan interval was 2 yr. 

Supplementary Table 2 auf nächster Seite ff 
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Neuroimaging 

T1-weighted magnetic resonance images (1.5 mm axial and 2 mm coronal slices), acquired 
using three-dimensional spoiled gradient recalled echo in the steady state on a 1.5-T Signa 
scanner (General Electric), were registered into standardized space24 and corrected for non-
uniformity artefacts25. The inner and outer cortical surfaces were extracted from tissue-
segmented images using deformable models, and non-linearly aligned towards a standard 
template surface26. Cortical thickness was measured in native space millimetres using the 
linked distance between the pial white and grey matter surfaces at 40,962 vertices throughout 
the cerebral cortex27 (see Supplementary Methods). In order to improve the ability to detect 
population changes, each cortical thickness map was blurred using a 30-mm surface-based 
blurring kernel, which respects anatomical boundaries and was chosen to maximize statistical 
power while minimizing false positives15. 

Supplementary methods. Demographic and neuropsychological details.  
 
Age appropriate IQ test were used: the WPPSI-III for children 4 to 6; the WISC-III for 6 to 17 
years; and the WAIS-III for 18 and above. For longitudinal analyses the subjects were split 
into three IQ groups, and the ranges we used overlap substantially with standard and widely 
used divisions of Weschler scale (low average and average IQ range 80 to 109; high average 
110 to 119; and superior and high superior greater than 120). Further demographic details of 
each of the IQ groups is given in supplementary Table 2. The mean IQ for the entire group 
was 113.3 (SD 12.9) and the mean age at time of first scan for the entire sample was 13 years 
(SD 4.5 years) with ages ranging from 3.8 to 25.4 years. Handedness was determined using 
the PANESS, and socio-economic status from the Hollingshead Scales. 
 
Neuroimaging details. Imaging parameters of the magnetic resonance images were: echo 
time of 5 ms, repetition time of 24 ms, flip angle of 45°, acquisition matrix of 256 x 192, 
number of excitations equals 1, and 24 cm field of view. Head placement was standardized as 
previously described 34. Registration into standardized stereotaxic space was performed using 
a linear transformation and segmentation into white matter, gray matter, cerebrospinal fluid 
and background through use of an advanced neural net classifier . Cortical thickness was 
estimated in native space, the measure thus giving an unadjusted estimate of absolute cortical 
thickness. 
 

Every cortical point can be assigned to one of 56 separate cortical regions on the basis of a 
probabilistic atlas, and thus analyses correlating IQ with the mean cortical thickness for each 
subregion were possible37. Statistical analyses were performed using SPSS version 11 (SPSS 
Inc, Chicago, Ill), except for the mixed-model random regression analyses, which were 
performed with the statistical package R (http://www.r-project.org/). 

 

Statistical analysis 

Pearson's correlations between IQ and cortical thickness were estimated at each cortical point. 
Each subject contributed only one scan to maintain independence of data, and efforts were 
made to ensure a wide age range was covered. Developmental effects were explored by 
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dividing the sample equally into four age groups (called early childhood (age range 3.8–
8.4 yr), late childhood (range 8.6–11.7 yr), adolescence (11.8–16.9 yr) and early adulthood 
(17–29 yr)). Correlations for each of 56 brain subregions were Z-transformed, and the 
difference between the Z scores for each age group, and its significance, was calculated. To 
correct for the large number of comparisons, a false discovery rate of 0.05 was applied28. 
Gender effects were examined for the entire sample in a similar manner. 

To exploit the longitudinal nature of our data set, we used linear mixed-model regression, as 
this technique permits the inclusion of multiple measurements per person, missing data, and 
irregular intervals between measurements, thereby increasing statistical power while 
controlling for within-individual variation29. Polynomial models for age effects were 
compared throughout the cerebral cortex and a cubic model found to provide the best fit, with 
the exception of anterior temporal cortices where a linear model was appropriate. A cubic 
model was therefore used to model age effects in the analyses presented. We first examined 
whether the relationship between IQ and cortical thickness differs with age by regressing 
cortical thickness at every vertex against IQ, age terms, and the interaction of IQ and age 
terms. For further exploration of the interaction, we divided the subjects into three IQ groups. 
This approach loses some power by categorizing a continuous variable, but has the advantage 
of rendering the results readily interpretable, allowing comparisons between highly intelligent 
and less intelligent groups. The resulting statistical maps were thresholded to control for 
multiple comparisons using the false discovery rate (FDR) procedure with q = 0.05 (refs 28, 
30). An FDR threshold was determined for the statistical model using all P values pooled 
across all effects included in the model. At every cortical point, t-statistics were visualized 
through projection onto a standard brain template (the map shows the results of the interaction 
between the cubic age term and IQ groups). Such visualization showed clusters of cortical 
points that had a significant difference between the intelligence groups in the trajectory of 
cortical growth. The longitudinal analyses selected and averaged all cortical points within 
each of these clusters. Graphs illustrating the trajectories were generated using fixed-effects 
parameter estimates. 

To illustrate differences in cortical thickness between the superior and average intelligence 
groups at different ages, linear mixed-models were run at different centred ages. For example, 
for age seven years, seven was subtracted from the age at scan acquisition, and this value 
entered as the age term. t-statistics representing the differences in cortical thickness between 
the two intelligence groups at each age were projected onto brain templates. This analysis 
represents group differences at each age based on values estimated from developmental 
curves modelled on all data. 
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Supplementary Figure: Interaction between age terms and IQ 
Cortical thickness was regressed against IQ, age terms (linear, quadratic and cubic age) and 
the interaction of IQ and age terms. The t statistics for the interaction terms were visualized 
through projection onto a standard brain template. Regions where there was a significant 
interaction (applying a fdr 0.05) of IQ with the cubic age term are shown below; the 
interaction of IQ and the squared, but not the linear, age term was significant in the same 
regions. The analyses suggest that IQ significantly modulates the effect of the polynomial age 
terms on cortical thickness predominately in the prefrontal cortical regions. 
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